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AlphaD3M Goals

Strongest AutoML systems are based on neural networks, evolutionary algorithms, and Bayesian optimization. Recently, AlphaD3M
reached SOA results with order of magnitude speedup using reinforcement learning with self-play. We extend AlphaD3M using a
pipeline grammar and generalize from many datasets and similar tasks by a pre-trained model. Results demonstrate improved
performance compared with existing methods on AutoML benchmark datasets.

AlphaD3M Pipeline Grammar

Table 1: Grammar < T, N, P,.S > for machine learning pipelines for a classification task.

T|[Terminals] SkImputer, MissingIndicator, OneH ot Encoder, Ordinal Encoder, Algorithm 1 Pipeline State Encoding

PCA ..., GaussianNB, RidgeClassifier, SGDClassifier, LinearSVC Given datasets D), tasks 7', and a set of possible pipeline

N[Non-Terminals] DataCleaning <DC>, DataTrans formation <DT >, sequences S, . . ., 55, from tl.le availal.)l.e machine learning,
Estimators <E> and data pre and post processing primitives.

S[Start] S e For each dataset D; and task 77;:
P[Production Rules] | <S> 1= <E> | <DC> <E> | <DT> <E> | <DC> <DT> <E>

<DC> ::= SkImputer <DC> |...| MissingIndicator <DC> | I. Encode dataset [J; as meta data features f(D;).
SkImputer |...| MissingIndicator 2. Encode task 7};.
<DT> ::= OneHotEncoder <DT> Ordinal Encoder <DT> |...| 3. Encode the current pipeline at time £ by a vector
PCA <DT> | St.
OneH ot Encoder Ordinal Encoder |...| PCA . Encode action f,(.S5};), so policy m maps (f(D);),
<E> 1= GaussianN B | RidgeClassifier | SGDClassifier |...| T;, Sp)to fa(S1), ..., fa(Sh).
LinearSVC

AlphaD3M Performance Comparison using Sklearn Primitives

Hill Valley Monks Spectf Vehicle

secs 2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
1.0 Autosklearn | ' | | | |

Tabula-rasa
0.9 M Pre-trained
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Performance comparison between AlphaD3M using a grammar pre-trained on other datasets (dark green), AlphaD3M using a
grammar trained from scratch (light green), and AutoSklearn (gray). Vertical axis is f1-score, time in seconds is horizontal axis.
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evaluation steps of MCTS with a grammar vs. without using a pipeline grammar: with and without a pipeline grammar
neural network (green) vs. MCTS each point represents a different OpenML
only (gray). dataset. Performance is not degraded even

though computation time is reduced.
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